Sylow subgroups of groups with Černikov conjugaey classes
نویسندگان
چکیده
منابع مشابه
POS-groups with some cyclic Sylow subgroups
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملThe Sylow Subgroups of the Symmetric Groups
The aim of this paper is to give a direct approach to the study of the Sylow ^-subgroups Sn of the symmetric group of degree pn. [We assume throughout that p^2.] Many of the results are already known and are treated in a paper by Kaloujnine where he uses a particular representation by means of "reduced polynomials."1 It has seemed worth while to restate some of his results using the concept of ...
متن کاملpos-groups with some cyclic sylow subgroups
a finite group g is said to be a pos-group if for each x in g the cardinality of the set {y in g | o(y) = o(x)} is a divisor of the order of g. in this paper we study the structure of pos-groups with some cyclic sylow subgroups.
متن کاملpos-groups with some cyclic sylow subgroups
a finite group g is said to be a pos-group if for each x in g the cardinality of the set {y in g | o(y) = o(x)} is a divisor of the order of g. in this paper we study the structure of pos-groups with some cyclic sylow subgroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90061-5